Day 2: Strengthening Assessment Tools and BSC Certification Programs

Questions to be answered by breakout groups

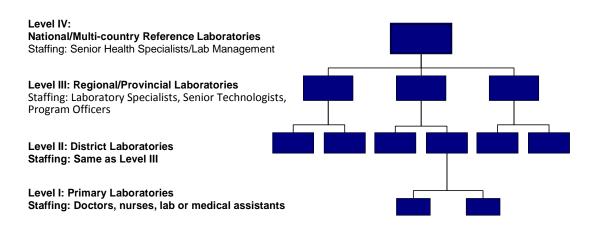
Groups A & B: Review and Critique the Proposed Assessment Tool

Facilitators: Candace Eastman (Group A) and Peter Minchella (Group B) **Recorders:** David Cross (Group A) and David Turgeon (Group B)

- Does the tool adequately cover basic biosafety requirements, practices, procedures and programs?
- Is the tool practical to use? If not, what are suggested ways to improve tool practicality and utilization?
- Does the tool adequately address BSL-2/BSL-3 needs/requirements in resource-limited countries?
- Would some of the elements of the tool address the biosafety needs/requirements of Point of Care Testing facilities?
- Should the same "weights" be assigned to each element of the tool, e.g., should element 3.46 (After use, are gloves removed aseptically and hands washed?) have the same weight as 5.29 (Is there a controlled ventilation system that maintains directional airflow into the laboratory?)?

Group C: Discuss the utilization of two different laboratory designations

Facilitator: George Alemnji Recorder: Pat Riley


- Laboratory tier designation per the Maputo Document (described below) with
- Biosafety Level Designations.

Can these two systems be integrated? What are the pros/cons of doing so?

Maputo Tiered Designation:

A consensus meeting of major stakeholders who were charged with making recommendations on laboratory testing standardization and harmonization in three major areas was held on 22-24 January 2008 in Maputo, Mozambique. The three areas discussed were: 1) testing needed at each level of a tiered, integrated laboratory network; 2) standardization of laboratory equipment and supplies at each level of a tiered laboratory network; and 3) key considerations to guide maintenance and service contracts for equipment at each level of a tiered laboratory network. This effort sought to strengthen laboratory capacity in resource-limited settings and determined that the best way to do this was through building sustainable laboratory capabilities provide access to high quality, rapid, and affordable diagnostic tests for the care, treatment, prevention and surveillance of HIV/AIDS, tuberculosis (TB) and malaria. A tiered, integrated laboratory network was proposed as providing the best model for service delivery across various levels of the public health system in resource-limited settings. Figure 1 (below) illustrates this designation, which is currently used in PEPFAR-supported countries.

Figure 1: The Tiered, Integrated Laboratory Network

The BSL Designation:

BSL	Agents	Practices	Safety Equipment	Facilities
			(Primary Barriers)	(Secondary
				Barriers)
1	Not known to consistently	Standard	None required	Open bench top,
	cause diseases in	microbiological		sink required
	immunocompetent adult	practices		
	humans			
2	Associated with human	BSL-1 practices plus:	Primary barriers: Class I or	BSL-1plus:
	disease. Hazard:	 limited access 	II biosafety cabinets or	 non-fabric chairs
	percutaneous injury,	 biohazard warning 	other physical	and other furniture
	mucous membrane	signs	containment devices used	easily cleanable
	exposure, ingestion	 sharps precautions 	for all manipulations of	 autoclave
		 biosafety manual 	agents that cause splashes	available
		defining waste	or aerosols of infectious	 eyewash readily
		decontamination or	materials; PPE: laboratory	available
		medical surveillance	coats, gloves, face	
		policies	protection as needed	
3	Indigenous or exotic	BSL-2 practices plus:	Primary barriers: Class I or	BSL-2 plus:
	agents with potential for	 controlled access 	II biosafety cabinets or	 physical
	aerosol transmission;	 decontamination of 	other physical	separation from
	disease may have serious	all wastes	containment devices used	access corridors
	or lethal consequences		for all manipulations of	 hands-free hand-
			agents; PPE: laboratory	washing- sink

		• decontamination of	coats, gloves, respiratory	 self-closing double
		lab clothing before	protection as needed	door access
		laundering		 exhaust air not
		 baseline serum 		recirculated
				 negative airflow
				into laboratory
				 eyewash readily
				available in lab
4	Dangerous/exotic agents	BSL-3 practices plus:	Primary barriers: All	BSL-3 plus:
	which pose high risk of	 clothing change 	procedures conducted in	 separate building
	life- threatening disease,	before entering	Class III biosafety cabinets	or isolated zone
	aerosol-transmitted lab	 shower on exit 	or Class I or II biosafety	 dedicated
	infections; or related	 all material 	cabinets in combination	supply/exhaust,
	agents with unknown risk	decontaminated on	with full-body, air	vacuum and
	of transmission	exit from facility	supplied positive pressure	decontamination
			suit	system

Group D: Biosafety Cabinet Certification

Facilitator: David Bressler Recorder: Jerry Pellegrini

- In order of importance, what do you believe are the limiting factors to establishing a sustainable BSC certification program in low to middle income countries?
- Given the importance of properly functioning biosafety cabinets (BSCs) to the overall safety of the public health laboratory environment what innovative solutions have you seen employed in low to middle income countries to ensure that this capacity is maintained?
- The annual certification of BSCs is an internationally recognized best practice. Is this the only option for the safe maintenance and operations of BSCs?
- Is safe operation and use of BSCs well understood by laboratorians or is this a training gap? How is this gap (if it exists) being addressed?